In Vivo Repeatedly Charging Near‐Infrared‐Emitting Mesoporous SiO2/ZnGa2O4:Cr3+ Persistent Luminescence Nanocomposites

نویسندگان

  • Zhanjun Li
  • Yuanwei Zhang
  • Xiang Wu
  • Xiaoqiong Wu
  • Rohit Maudgal
  • Hongwu Zhang
  • Gang Han
چکیده

Near-infrared (NIR) persistent phosphor ZnGa2O4:Cr3+ (ZGC) has unique deep-tissue rechargeable afterglow properties. However, the current synthesis leads to agglomerated products with irregular morphologies and wide size distributions. Herein, we report on in vivo rechargeable mesoporous SiO2/ZnGa2O4:Cr3+ (mZGC) afterglow NIR-emitting nanocomposites that are made by a simple, one-step mesoporous template method. At less than 600 °C, pores in mesoporous silica nanoparticles (MSNs) act as nanoreactors to generate in situ ZnGa2O4:Cr3+ NIR-persistent phosphors. The as-synthesized mZGC preserves defined size, morphology, and mesoporous nanostructure of the MSNs. The persistent luminescence of the as-synthesized mZGC is recharged in a simulated deep-tissue environment (e.g., ≈8 mm pork slab) in vitro by using red light (620 nm). Moreover, mZGC can be repeatedly activated in vivo for persistent luminescence imaging in a live mouse model by using white LED as a light source. Our concept of utilizing mesoporous silica as nanoreactor to fabricate ZGC PL nanoparticles with controllable morphology and preserved porous nanostructure paves a new way to the development and the wide application of deep tissue rechargeable ZGC in photonics and biophotonics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near Infrared-Emitting Cr3+/Eu3+ Co-doped Zinc Gallogermanate Persistence Luminescent Nanoparticles for Cell Imaging

Near infrared (NIR)-emitting persistent luminescent nanoparticles have been developed as potential agents for bioimaging. However, synthesizing uniform nanoparticles with long afterglow for long-term imaging is lacking. Here, we demonstrated the synthesis of spinel structured Zn3Ga2Ge2O10:Cr3+ (ZGGO:Cr3+) and Zn3Ga2Ge2O10:Cr3+,Eu3+ (ZGGO:Cr3+,Eu3+) nanoparticles by a sol-gel method in combinati...

متن کامل

Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8

In conventional photostimulable storage phosphors, the optical information written by x-ray or ultraviolet irradiation is usually read out as a visible photostimulated luminescence (PSL) signal under the stimulation of a low-energy light with appropriate wavelength. Unlike the transient PSL, here we report a new optical read-out form, photostimulated persistent luminescence (PSPL) in the near-i...

متن کامل

LaAlO3:Mn4+ as Near-Infrared Emitting Persistent Luminescence Phosphor for Medical Imaging: A Charge Compensation Study

Mn4+-activated phosphors are emerging as a novel class of deep red/near-infrared emitting persistent luminescence materials for medical imaging as a promising alternative to Cr3+-doped nanomaterials. Currently, it remains a challenge to improve the afterglow and photoluminescence properties of these phosphors through a traditional high-temperature solid-state reaction method in air. Herein we p...

متن کامل

Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging.

The design and fabrication of multimodal imaging nanoparticles is of great importance in medical diagnosis. Here we report the fabrication of core-shell structured Zn2.94Ga1.96Ge2O10:Cr(3+),Pr(3+)@TaOx@SiO2 nanoparticles for persistent luminescence and X-ray computed tomography (CT) imaging. Persistent luminescent nanoparticles Zn2.94Ga1.96Ge2O10:Cr(3+),Pr(3+) were used as the core to provide n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2015